

DIGESTION III

I. DEFINITIONS

ingestion = eating

mechanical digestion = grinding of food by teeth and mixing of food by peristalsis

chemical digestion = enzymatic breakdown of large organic molecules into sub-units

extracellular digestion = chemical digestion that takes place outside of cells (i.e. in the lumen of the digestive tract)

intracellular digestion = chemical digestion that occurs inside cells (in lysosomes)

II. CHEMICAL DIGESTION

-summarized in **Table I in manual**

- we will now look at the chemical digestion of all the major organic molecules

A. Carbohydrates (starch, glycogen)

- digestion of starch (a polysaccharide) to maltose (a disaccharide) starts in the mouth) using **salivary amylase** \Rightarrow digests about 3% of the starch
- salivary amylase continues to act for about 15 minutes until it is inactivated by hydrochloric acid in the stomach
- in the duodenum of the small intestine:

- (i) **pancreatic amylase** (from pancreas) completes the breakdown to maltose
- (ii) **maltase** (from cells in the intestinal wall) digests maltose into glucose (a monosaccharide)

- the disaccharides lactose and sucrose can also be digested into monosaccharides; the enzymes (lactase and sucrase) are produced by the cells of the small intestine
- monosaccharides can then be: **Biochemistry Handout Fig 19.13**; i.e. Fig 24.20 (T11/T12)

- (i) absorbed by cells lining small intestine
- (ii) transported from the cells into capillary networks
- (iii) sent to the liver via the hepatic portal system

B. Proteins

- see manual **Table 1 for summary**

- digestion involves 2 general types of enzymes:

(i) **endopeptidases** break proteins into fragments by breaking internal chem. bonds

(ii) **exopeptidases** break down fragments by removing single amino acids from end

- cells lining the stomach secrete an inactive enzyme called **pepsinogen**

- HCl converts pepsinogen into active **pepsin** (an endopeptidase)

- pepsin begins the digestion of protein in the acid pH of the stomach

- 2 other endopeptidases (**trypsin & chymotrypsin** from pancreatic juice) continue digestion in the alkaline pH of the small intestine

- there are also 2 exopeptidases that act in the small intestine

(i) **carboxypeptidase** (from pancreatic juice) that removes amino acids from the carboxy (COOH) end of protein fragments

(ii) **amino peptidase** (secreted by intestinal cells) that remove amino acids from the amino (NH₃) end of protein fragments

- single amino acids are absorbed into capillaries of the hepatic portal system and are transported to the liver just like monosaccharides: **Biochemistry Handout Fig 19.13**

C. Fats - see summary in Table I of manual

- digestion involves **3 lipase enzymes**:

(i) **lingual lipase** is made by salivary glands, is activated by stomach acid, and can remove only one fatty acid

(ii) **gastric lipase**, made by cells lining the stomach, can remove 1 or 2 fatty acids

(iii) **pancreatic lipase** acts in the small int. and completes the digestion of fats to monoglyceride and fatty acids

- for pancreatic lipase to act efficiently, **bile** must emulsify fat globules into tiny droplets

- end products of lipase are fatty acids and monoglycerides which are absorbed into cells lining the small intestine

- once inside the cells:

(i) the final fatty acids are removed from the monoglycerides

(ii) glycerol and fatty acids are made back into fats

(iii) fats, phospholipids & cholesterol are coated with soluble proteins = **chylomicrons**

- the chylomicrons enter small lymphatic vessels called lacteals located in the center of villi

- see **Biochemistry Handout Fig 19.13**

- lacteals drain into larger lymphatic vessels that eventually join with the bloodstream at the left sub-clavian vein

III. CONTROL OF THE SECRETION OF DIGESTIVE JUICES

A. Nervous Control (fast and short-acting response)

- sight, smell, hearing of food prep and even thought of food stimulates cerebrum

⇒ impulse to stomach to produce gastric juice (HCl, mucous, pepsinogen)

- food in mouth stimulates taste buds

⇒ impulse to cerebrum

⇒ impulse to stomach to produce gastric juice and pancreas to produce pancreatic juice (alkaline fluid with enzymes)

B. Hormonal Control (slow and long-acting response)

Manual Figs 3 & 4

(i) Gastrin

- produced by ductless (endocrine) glands of the **stomach** when stimulated by the presence of **protein-containing food**

- enters blood capillaries and circulates to other types of cells lining the stomach

- causes cells to secrete **gastric juice**

(ii) Secretin

- produced by endocrine glands of the **small intestine** when stimulated by the presence of **acidic food** (chyme) in the duodenum

- enters blood capillaries and goes to pancreas

- causes production of **pancreatic juice** (alkaline fluid with enzymes)

ADDITIONAL CHAPTER 24 TEXTBOOK QUESTIONS TO TRY:

Tortora 11th OR 12th ed.: Self-Quiz Questions 1 & 14 (b-h & k) and Fig. Questions 24.18 & 24.1

Tortora 10th ed: Self-Quiz Questions 3 & 14 (b-h); Fig Questions. 24.23 & 24.1

Martini 8th ed: Chapter 24 Review Questions 1, 9, 13 & 19