

INTRODUCTORY BIOCHEMISTRY

- almost all molecules inside cells (other than water) are carbon based
- **organic chemistry** = the study of carbon based compounds
- concentrations of C, H, O, N, S, & P are quite constant from organism to organism
 - ⇒ the huge diversity of organic molecules is made possible by the versatility of carbon atoms as building blocks
- C atoms have 4 e- in their outer shell ⇒ forms 4 covalent bonds
 - ⇒ C atoms act as intersections; allowing formation of rings, branches, and double bonds

C structures can be represented by **simplified diagrams** where:

Fig 2.14

- (i) C and H atoms are not written in
- (ii) each bend = a C atom
- (iii) each C is assumed to be bound to enough H's to complete C's outer shell (i.e. to make 4 bonds)

There are 4 major classes of organic compounds found in the human body: carbohydrates, lipids, proteins and nucleic acids

- all 4 classes consist of sub-units that can be:

Figs 2.15, 2.17, 2.21

- (i) covalently bound together by the chemical **removal of a water molecule (dehydration synthesis)**
- (ii) broken off from larger molecules by chemical addition of a water molecule (**hydrolysis**)

I. CARBOHYDRATES = sugars, starch, glycogen, & cellulose

A. monosaccharides = “simple” sugars

- made up of C, H, and O; typically in the ratio of 1:2:1 (CH_2O)
- contain **3 to 7 C atoms** and usually **form ring** in solution
 - e.g. glucose **Fig 2.14**
- **glucose, fructose, galactose and manose** are all $\text{C}_6\text{H}_{12}\text{O}_6$ in different arrangements
- sugars are found in relatively small amounts in natural foods:
 - glucose and fructose – found in fruits and honey
 - galactose – found in grapes and figs
 - manose – found in pineapples, olives and carrots
- processed foods contain large amounts of glucose and high fructose corn syrup:
 - corn syrup now accounts for 20% of all carbs consumed in USA
 - rose from 225 gm/person/yr in 1970 to 28 kg/person/yr in 1997 = 225 X
 - ⇒ may be a significant contributer to epidemic obesity and insolent resistant diabetes

Metabolic Importance:

- **glucose** (from digestion of larger carbohydrates) is the **main energy supplying molecule** for the body (for cellular respiration)
- all other monosac. are easily converted to glucose
- monosac. (mostly glucose) are **used to make all the larger carbohydrates** (see below)
- **DNA subunits, RNA subunits, and ATP all contain a 5C sugar** (ribose or deoxyribose)

- combine with lipids and proteins to make glycolipids and glycoproteins (important in cell membranes where they **function in cell to cell recognition**)

Absorption: Figs 24.18 and 24.20 in 11th ed. OR 24.23 and 24.25 in 10th ed.

- carbohydrates from food are digested to **monosach. units** and are then **absorbed into epithelial cells lining the villi of the small intestine**
- glucose and galactose are **actively** absorbed by one membrane transport protein that uses **cotransport with sodium** ions as an energy source
- manose uses active transport by another sodium dependent transport protein
- fructose is absorbed by **facilitated diffusion** (passive)

Transport: Figs 24.20b & 21.28 in 11th ed. OR 24.25b & 21.29 in 10th ed.

- sugars are water soluble
- once absorbed, sugars enter veins via capillary networks
- **veins** from the stomach & intestines **join to form the hepatic portal vein**
 - ⇒ **takes nutrients** absorbed from food **to the liver for modification/storage**
- after modification, blood enters **2 hepatic veins** which lead to the **inferior vena cava**
 - ⇒ **takes nutrients to heart** for circulation

note: the liver receives most of its blood from the hepatic portal system, but also receives some blood via the hepatic artery

B. disaccharides = 2 monosaccharides covalently joined by dehydration synthesis

- e.g. (i) **sucrose** (cane sugar or table sugar) is made from glucose + fructose
- (ii) **lactose** (milk sugar) = glucose + galactose
- (iii) **maltose** = glucose + glucose
- disaccharides function primarily to **supply energy**

Fig 2.15

C. polysaccharides = "many" sugars joined together by dehydration synthesis

Fig 2.16

- e.g. **starch, glycogen & cellulose** are all made from glucose bound together in different ways
 - glycogen and starch function in **long term energy storage** in animals & plants respectively, and both can be digested by humans
 - cellulose is a **structural molecule** found in plants; we cannot digest it = "fiber"

II. LIPIDS - a widely divergent class of organic molecules that are grouped together because

- (i) they are all **made primarily of C and H atoms** (very little O)
- (ii) they are all **hydrophobic** ("water hating")

There are **3 major groups of lipids important to humans:**

A. Fats or triglycerides: **Figs 2.17**

- are made from 2 types of subunits: 1 glycerol + 3 fatty acids
- provide **protection, insulation, highly concentrated source of energy**
- may be (i) **saturated** ⇒ all C atom's in the fatty acid chains are "full" of H (**no double bonds**)
 - occur mostly in **animal** foods and tend to be solid at room temperature
 - e.g. lard (from meat), butter, eggs

- (ii) **unsaturated** \Rightarrow 1 or more double covalent bonds between C's in fatty acid chains
 - occur mostly in **plant** foods and are liquid at room temp.
 - e.g. olive & peanut oil
- (iii) **polyunsaturated** \Rightarrow many double covalent bonds
 - e.g. corn & sunflower oil

B. Phospholipids: - made from glycerol + 2 fatty acids + a phosphate group **Fig 2.18**

- fatty acids "tails" are hydrophobic and PO_4 head is hydrophilic (water loving)
- \Rightarrow naturally form a bilipid layer (the basic structure of **cell membranes**) **Fig 3.2**

C. Steroids - complex molecules with 4 interlocking rings **Fig 2.19**

- include (i) **hormones** \Rightarrow regulate cell activities
- (ii) **cholesterol** \Rightarrow used to make bile and other steroids; part of cell membranes
- (iii) **Vitamin D** \Rightarrow needed for bone growth, development and repair

Absorption, Transport and Storage of Lipids: **Fig 24.20b** in 11th ed. OR 24.25b in 10th ed.

- fats are digested to monoglycerides and fatty acids and then absorbed by diffusion into epithelial cells around the small intestine
- in the Golgi of epithelial cells, the final fatty acids are removed from monoglycerides, but the resulting glycerol and fatty acids are made back into fats
- fats, phospholipids and cholesterol are combined and coated with soluble proteins = **chylomicrons**
- chylomicrons then leave the cells by exocytosis, enter lacteals (small ducts of lymphatic system), and are carried by lymphatic ducts to the left subclavian vein \rightarrow stored in liver and adipose cells

III. PROTEINS

- very complex molecules that contain C, H, O, N and usually Sulphur (S)
- are structurally diverse and perform **MANY functions**; used minimally for energy **Table 2.8**
- are made from **20 sub-units called amino acids** **Fig 2.20**
- 10 of the amino acids cannot be made in sufficient quantities by the body so they must be obtained in the diet = "**essential** amino acids"
- each amino acid consists of a central C atom covalently bound to:
 - (i) an NH_2 (**amino**) group
 - (ii) a COOH (carboxylic **acid**) group
 - (iii) an H atom
 - (iv) one of 20 different "R groups"
- amino acids are joined end to end by dehydration synthesis = a **polypeptide** **Fig 2.22**
- 1 or more polypeptides folded and chemically bonded together = a **protein**
- amino acids are absorbed and transported much like monosaccharides

Note: make sure you study the last two objectives from the Biochemistry unit (I have not covered them)

TORTORA CHAPTER 2 TEXTBOOK QUESTIONS TO TRY

- Self Quiz 3, 4, 5, 7, 8, & 13 in 11-12th ed. OR 1, 2, 5, 6, 8, 10, 11 in 10th ed.
- Figure Questions 2.1, 2.2, 2.4, 2.5, 2.15, 2.18, 2.20 and 2.21 (10th to 12th ed.)